Advanced Ultrasonic Methods for Material and Structure Inspection
Home > Medicine & Health Science textbooks > Medical specialties, branches of medicine > Medical imaging > Medical imaging: ultrasonics > Advanced Ultrasonic Methods for Material and Structure Inspection
Advanced Ultrasonic Methods for Material and Structure Inspection

Advanced Ultrasonic Methods for Material and Structure Inspection

|
     0     
5
4
3
2
1




Out of Stock


Notify me when this book is in stock
About the Book

Ultrasonic signals are increasingly being used for predicting material behavior, both in an engineering context (detecting anomalies in a variety of structures) and a biological context (examining human bones, body parts and unborn fetuses). Featuring contributions from authors who are specialists in their subject area, this book presents new developments in ultrasonic research in both these areas, including ultrasonic NDE and other areas which go beyond traditional imaging techniques of internal defects. As such, both those in the biological and physical science communities will find this an informative and stimulating read.

Table of Contents:
Preface xiii Chapter 1. An Introduction to Failure Mechanisms and Ultrasonic Inspection 1 Kumar V. JATA, Tribikram KUNDU and Triplicane A. PARTHASARATHY 1.1. Introduction 1 1.2. Issues in connecting failure mechanism, NDE and SHM 2 1.3. Physics of failure of metals 4 1.3.1. High level classification 4 1.3.1.1. Deformation 5 1.3.1.2. Fracture 5 1.3.1.3. Dynamic fatigue 6 1.3.1.4. Material loss 7 1.3.2. Second level classification 7 1.3.2.1. Deformation due to yield 7 1.3.2.2. Creep deformation and rupture 9 1.3.2.3. Static fracture 12 1.3.2.4. Fatigue 13 1.3.2.5. Corrosion 18 1.3.2.6. Oxidation 20 1.4. Physics of failure of ceramic matrix composites 21 1.4.1. Fracture 23 1.4.1.1. Mechanical loads and fatigue 23 1.4.1.2. Thermal gradients 24 1.4.1.3. Microstructural degradation 25 1.4.2. Material loss 25 1.5. Physics of failure and NDE 26 1.6. Elastic waves for NDE and SHM 26 1.6.1. Ultrasonic waves used for SHM 26 1.6.1.1. Bulk waves: longitudinal and shear waves 27 1.6.1.2. Guided waves: Rayleigh and Lamb waves, bar, plate and cylindrical guided waves 28 1.6.2. Active and passive ultrasonic inspection techniques 30 1.6.3. Transmitter-receiver arrangements for ultrasonic inspection 30 1.6.4. Different types of ultrasonic scanning 31 1.6.5. Guided wave inspection technique 32 1.6.5.1. One transmitter and one receiver arrangement 32 1.6.5.2. One transmitter and multiple receivers arrangement 35 1.6.5.3. Multiple transmitters and multiple receivers arrangement 36 1.6.6. Advanced techniques in ultrasonic NDE/SHM 36 1.6.6.1. Lazer ultrasonics 36 1.6.6.2. Measuring material non-linearity 37 1.7. Conclusion 38 1.8. Bibliography 38 Chapter 2. Health Monitoring of Composite Structures Using Ultrasonic Guided Waves 43 Sauvik BANERJEE, Fabrizio RICCI, Frank SHIH and Ajit MAL 2.1. Introduction 43 2.2. Guided (Lamb) wave propagation in plates 46 2.2.1. Lamb waves in thin plates 51 2.2.2. Lamb waves in thick plates 55 2.3. Passive ultrasonic monitoring and characterization of low velocity impact damage in composite plates 60 2.3.1. Experimental set-up 60 2.3.2. Impact-acoustic emission test on a cross-ply composite plate 64 2.3.3. Impact test on a stringer stiffened composite panel 71 2.4. Autonomous active damage monitoring in composite plates 75 2.4.1. The damage index 76 2.4.2. Applications of the damage index approach 77 2.5. Conclusion 85 2.6. Bibliography 86 Chapter 3. Ultrasonic Measurement of Micro-acoustic Properties of the Biological Soft Materials 89 Yoshifumi SAIJO 3.1. Introduction 89 3.2. Materials and methods 91 3.2.1. Acoustic microscopy between 100 and 200 MHz 91 3.2.2. Sound speed acoustic microscopy 95 3.2.3. Acoustic microscopy at 1.1 GHz 98 3.3. Results 99 3.3.1. Gastric cancer 99 3.3.2. Renal cell carcinoma 103 3.3.3. Myocardial infarction 104 3.3.4. Heart transplantation 106 3.3.5. Atherosclerosis 107 3.4. Conclusion 112 3.5. Bibliography 112 Chapter 4. Corrosion and Erosion Monitoring of Pipes by an Ultrasonic Guided Wave Method 115 Geir INSTANES, Mads TOPPE, Balachander LAKSHMINARAYAN, and Peter B. NAGY 4.1. Introduction 115 4.2. Ultrasonic guided wave monitoring of average wall thickness in pipes 118 4.2.1. Guided wave inspection with dispersive Lamb-type guided modes 119 4.2.2. Averaging in CGV inspection 123 4.2.3. The influence of gating, true phase angle 129 4.2.4. Temperature influence on CGV guided wave inspection 132 4.2.5. Inversion of the average wall thickness in CGV guided wave inspection 134 4.2.6. Additional miscellaneous effects in CGV guided wave inspection 136 4.2.6.1. Fluid loading effects on CGV inspection 136 4.2.6.2. Surface roughness effects on CGV inspection 139 4.2.6.3. Pipe curvature effects on CGV inspection 141 4.3. Experimental validation 145 4.3.1. Laboratory tests 145 4.3.2. Field tests 151 4.4. Conclusion 153 4.5. Bibliography 155 Chapter 5. Modeling of the Ultrasonic Field of Two Transducers Immersed in a Homogenous Fluid Using the Distributed Point Source Method 159 Rais AHMAD, Tribikram KUNDU and Dominique PLACKO 5.1. Introduction 159 5.2. Theory 160 5.2.1. Planar transducer modeling by the distribution of point source method 160 5.2.2. Computation of ultrasonic field in a homogenous fluid using DPSM 161 5.2.3. Matrix formulation 163 5.2.4. Modeling of ultrasonic field in a homogenous fluid in the presence of a solid scatterer 165 5.2.5. Interaction between two transducers in a homogenous fluid 169 5.3. Numerical results and discussion 171 5.3.1. Interaction between two parallel transducers 172 5.3.2. Interaction between an inclined and a flat transducer 184 5.3.3. Interaction between two inclined transducers 185 5.4. Conclusion 186 5.5. Acknowledgments 186 5.6. Bibliography 187 Chapter 6. Ultrasonic Scattering in Textured Polycrystalline Materials 189 Liyong YANG, Goutam GHOSHAL and Joseph A. TURNER 6.1. Introduction 189 6.2. Preliminary elastodynamics 191 6.2.1. Ensemble average response 191 6.2.2. Spatial correlation function 195 6.3. Cubic crystallites with orthorhombic texture 197 6.3.1. Orientation distribution function 197 6.3.2. Effective elastic stiffness for rolling texture 199 6.3.3. Christoffel equation 201 6.3.4. Wave velocity and polarization 202 6.3.5. Phase velocity during annealing 207 6.3.6. Attenuation 210 6.4. Attenuation in hexagonal polycrystals with texture 215 6.4.1. Effective elastic stiffness for fiber texture 216 6.4.2. Attenuation 220 6.4.3. Numerical simulation 223 6.5. Diffuse backscatter in hexagonal polycrystals 229 6.6. Conclusion 232 6.7. Acknowledgments 233 6.8. Bibliography 233 Chapter 7. Embedded Ultrasonic NDE with Piezoelectric Wafer Active Sensors 237 Victor GIURGIUTIU 7.1. Introduction to piezoelectric wafer active sensors 237 7.2. Guided-wave ultrasonic NDE and damage identification 240 7.3. PWAS ultrasonic transducers 242 7.4. Shear layer interaction between PWAS and structure 244 7.5. Tuned excitation of Lamb modes with PWAS transducers 246 7.6. PWAS phased arrays 249 7.7. Electromechanical impedance method for damage identification 255 7.8. Damage identification in aging aircraft panels 258 7.8.1. Classification of crack damage in the PWAS near-field 259 7.8.2. Classification of crack damage in the PWAS medium-field 260 7.8.2.1. Impact detection with piezoelectric wafer active sensors 263 7.8.2.2. Acoustic emission detection with piezoelectric wafer active sensors 266 7.9. PWAS Rayleigh waves NDE in rail tracks 268 7.10. Conclusion 268 7.11. Acknowledgments 269 7.12. Bibliography 269 Chapter 8. Mechanics Aspects of Non-linear Acoustic Signal Modulation due to Crack Damage 273 Hwai-Chung WU and Kraig WARNEMUENDE 8.1. Introduction 273 8.1.1. Passive modulation spectrum 274 8.1.2. Active wave modulation 275 8.2. Damage in concrete 275 8.3. Stress wave modulation 280 8.3.1. Material non-linearity in concrete 281 8.3.2. Generation of non-linearity at crack interfaces 282 8.3.3. Unbonded planar crack interface in semi-infinite elastic media 289 8.3.4. Unbonded planar crack interface with multiple wave interaction 295 8.3.5. Plane crack with traction 301 8.3.6. Rough crack interface 307 8.4. Summary and conclusion 314 8.5. Bibliography 315 Chapter 9. Non-contact Mechanical Characterization and Testing of Drug Tablets 319 Cetin CETINKAYA, Ilgaz AKSELI, Girindra N. MANI, Christopher F. LIBORDI and Ivin VARGHESE 9.1. Introduction 319 9.2. Drug tablet testing for mechanical properties and defects 321 9.2.1. Drug tablet as a composite structure: structure of a typical drug tablet 321 9.2.2. Basic manufacturing techniques: cores and coating layers 322 9.2.3. Tablet coating 323 9.2.4. Types and classifications of defects in tablets 325 9.2.5. Standard tablet testing methods 327 9.2.6. Review of other works 330 9.3. Non-contact excitation and detection of vibrational modes of drug tablets 332 9.3.1. Air-coupled excitation via transducers 334 9.3.2. LIP excitation via a pulsed lazer 336 9.3.3. Vibration plate excitation using direct pulsed lazer irradiation 338 9.3.4. Contact ultrasonic measurements 340 9.4. Mechanical quality monitoring and characterization 341 9.4.1. Basics of tablet integrity monitoring 341 9.4.2. Mechanical characterization of drug tablet materials 356 9.4.3. Numerical schemes for mechanical property determination 361 9.5. Conclusions, comments and discussions 365 9.6. Acknowledgments 367 9.7. Bibliography 367 Chapter 10. Split Hopkinson Bars for Dynamic Structural Testing 371 Chul Jin SYN and Weinong W. CHEN 10.1. Introduction 371 10.2. Split Hopkinson bars 372 10.3. Using bar waves to determine fracture toughness 374 10.4. Determination of dynamic biaxial flexural strength 380 10.5. Dynamic response of micromachined structures 381 10.6. Conclusion 383 10.7. Bibliography 384 List of Authors 387 Index 391


Best Sellers


Product Details
  • ISBN-13: 9781905209699
  • Publisher: ISTE Ltd and John Wiley & Sons Inc
  • Publisher Imprint: ISTE Ltd and John Wiley & Sons Inc
  • Height: 241 mm
  • No of Pages: 393
  • Returnable: N
  • Weight: 721 gr
  • ISBN-10: 190520969X
  • Publisher Date: 09 Jan 2007
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Spine Width: 28 mm
  • Width: 164 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Advanced Ultrasonic Methods for Material and Structure Inspection
ISTE Ltd and John Wiley & Sons Inc -
Advanced Ultrasonic Methods for Material and Structure Inspection
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Advanced Ultrasonic Methods for Material and Structure Inspection

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!