Buy Statistical Diagnostics for Cancer at Bookstore UAE
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Medicine & Health Science textbooks > Clinical and internal medicine > Medical diagnosis > Statistical Diagnostics for Cancer: Analyzing High-Dimensional Data(Quantitative and Network Biology)
Statistical Diagnostics for Cancer: Analyzing High-Dimensional Data(Quantitative and Network Biology)

Statistical Diagnostics for Cancer: Analyzing High-Dimensional Data(Quantitative and Network Biology)


     0     
5
4
3
2
1



Available


X
About the Book

This ready reference discusses different methods for statistically analyzing and validating data created with high-throughput methods. As opposed to other titles, this book focusses on systems approaches, meaning that no single gene or protein forms the basis of the analysis but rather a more or less complex biological network. From a methodological point of view, the well balanced contributions describe a variety of modern supervised and unsupervised statistical methods applied to various large-scale datasets from genomics and genetics experiments. Furthermore, since the availability of sufficient computer power in recent years has shifted attention from parametric to nonparametric methods, the methods presented here make use of such computer-intensive approaches as Bootstrap, Markov Chain Monte Carlo or general resampling methods. Finally, due to the large amount of information available in public databases, a chapter on Bayesian methods is included, which also provides a systematic means to integrate this information. A welcome guide for mathematicians and the medical and basic research communities.

Table of Contents:
Control of Type I Error Rates for Oncology Biomarker Discovery with High-throughput Platforms (Jeffrey Miecznikowski, Dan Wang, Song Liu) Discovery of Expression Signatures in Chronic Myeloid Leukemia by Bayesian Model Averaging (Ka Yee Yeung) Bayesian Ranking and Selection Methods in Microarray Studies (Hisashi Noma, Shigeyuki Matsui) Multi-class Classification via Bayesian Variable Selection with Gene Expression Data (Yang Aijun, Song Xinyuan, Li Yunxian) Colorectal Cancer and its Molecular Subsystems: Construction, Interpretation, and Validation (Vishal N. Patel, Mark R. Chance) Semi-Supervised Methods for Analyzing High-Dimensional Genomic Data (Devin C. Koestler) Network Medicine: Disease Genes in Molecular Networks (Sreenivas Chavali, Kartiek Kanduri) Inference of Gene Regulatory Networks in Breast and Ovarian Cancer by Integrating Different Genomic Data (Binhua Tang, Fei Gu, Victor X. Jin) Network Module Based Approaches in Cancer Data Analysis (Guanming Wu, Lincoln D. Stein) Discriminant and Network Analysis to Study Origin Of Cancer (Yue Wang, Li Chen, Ye Tian, Guoqiang Yu, David J. Miller, Ie-Ming Shih) Intervention and Control of Gene Regulatory Net-Works: Theoretical Framework and Application to Human Melanoma Gene Regulation (Nidhal Bouaynaya, Roman Shterenberg, Dan Schonfeld, Hassan M. Fathallah-Shaykh) Identification of Recurrent DNA Copy Number Aberrations in Tumors (Vonn Walter, Andrew B. Nobel, D. Neil Hayes, Fred A. Wright) The Cancer Cell, its Entropy, and High-Dimensional Molecular Data (Wessel N. van Wieringen, Aad W. van der Vaart) Overview of Public Cancer Databases, Resources and Visualization Tools (Frank Emmert-Streib, Ricardo de Matos Simoes, Shailesh Tripathi, Matthias Dehmer)

About the Author :
Frank Emmert-Streib studied physics at the University of Siegen (Germany) and received his Ph.D. in Theoretical Physics from the University of Bremen (Germany). He was a postdoctoral research associate at the Stowers Institute for Medical Research (Kansas City, USA) in the Department for Bioinformatics and a Senior Fellow at the University of Washington (Seattle, USA) in the Department of Biostatistics and the Department of Genome Sciences. Currently, he is Lecturer/Assistant Professor at the Queen's University Belfast at the Center for Cancer Research and Cell Biology (CCRCB) leading the Computational Biology and Machine Learning Lab. His research interests are in the field of computational biology, machine learning and biostatistics in the development and application of methods from statistics and machine learning for the analysis of high-throughput data from genomics and genetics experiments. Matthias Dehmer studied mathematics at the University of Siegen (Germany) and received his PhD in computer science from the Technical University of Darmstadt (Germany). Afterwards, he was a research fellow at Vienna Bio Center (Austria), Vienna University of Technology and University of Coimbra (Portugal). Currently, he is Professor at UMIT - The Health and Life Sciences University (Austria). His research interests are in bioinformatics, cancer analysis, chemical graph theory, systems biology, complex networks, complexity, statistics and information theory. In particular, he is also working on machine learning-based methods to design new data analysis methods for solving problems in computational biology and medicinal chemistry.


Best Sellers


Product Details
  • ISBN-13: 9783527332625
  • Publisher: Wiley-VCH Verlag GmbH
  • Publisher Imprint: Blackwell Verlag GmbH
  • Height: 246 mm
  • No of Pages: 312
  • Spine Width: 21 mm
  • Weight: 803 gr
  • ISBN-10: 3527332626
  • Publisher Date: 16 Jan 2013
  • Binding: Hardback
  • Language: English
  • Series Title: Quantitative and Network Biology
  • Sub Title: Analyzing High-Dimensional Data
  • Width: 178 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Statistical Diagnostics for Cancer: Analyzing High-Dimensional Data(Quantitative and Network Biology)
Wiley-VCH Verlag GmbH -
Statistical Diagnostics for Cancer: Analyzing High-Dimensional Data(Quantitative and Network Biology)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Statistical Diagnostics for Cancer: Analyzing High-Dimensional Data(Quantitative and Network Biology)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!