Buy The Shape of Data by Colleen M. Farrelly - Bookswagon
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Computing and Information Technology > Computer science > Artificial intelligence > Machine learning > The Shape of Data: Geometry-Based Machine Learning and Data Analysis in R
The Shape of Data: Geometry-Based Machine Learning and Data Analysis in R

The Shape of Data: Geometry-Based Machine Learning and Data Analysis in R


     0     
5
4
3
2
1



International Edition


X
About the Book

This advanced machine learning book highlights many algorithms from a geometric perspective and introduces tools in network science, metric geometry, and topological data analysis through practical application. This advanced machine learning book highlights many algorithms from a geometric perspective and introduces tools in network science, metric geometry, and topological data analysis through practical application. Whether you're a mathematician, seasoned data scientist, or marketing professional, you'll find The Shape of Data to be the perfect introduction to the critical interplay between the geometry of data structures and machine learning. This book's extensive collection of case studies (drawn from medicine, education, sociology, linguistics, and more) and gentle explanations of the math behind dozens of algorithms provide a comprehensive yet accessible look at how geometry shapes the algorithms that drive data analysis. In addition to gaining a deeper understanding of how to implement geometry-based algorithms with code, you'll explore- Supervised and unsupervised learning algorithms and their application to network data analysis The way distance metrics and dimensionality reduction impact machine learning How to visualize, embed, and analyze survey and text data with topology-based algorithms New approaches to computational solutions, including distributed computing and quantum algorithms

About the Author :
Colleen M. Farrelly is a senior data scientist whose academic and industry research has focused on topological data analysis, quantum machine learning, geometry-based machine learning, network science, hierarchical modeling, and natural language processing. Since graduating from the University of Miami with an MS in biostatistics, Colleen has worked as a data scientist in a vari- ety of industries, including healthcare, consumer packaged goods, biotech, nuclear engineering, marketing, and education. Colleen often speaks at tech conferences, including PyData, SAS Global, WiDS, Data Science Africa, and DataScience SALON. When not working, Colleen can be found writing haibun/haiga or swimming. Yaé Ulrich Gaba completed his doctoral studies at the University of Cape Town (UCT, South Africa) with a specialization in topology and is currently a research associate at Quantum Leap Africa (QLA, Rwanda). His research interests are computational geometry, applied algebraic topology (topologi- cal data analysis), and geometric machine learning (graph and point-cloud representation learning). His current focus lies in geometric methods in data analysis, and his work seeks to develop effective and theoretically justified algorithms for data and shape analysis using geometric and topological ideas and methods.

Review :
"The title says it all. Data is bound by many complex relationships not easily shown in our two-dimensional, spreadsheet filled world. The Shape of Data walks you through this richer view and illustrates how to put it into practice." —Stephanie Thompson, Data Scientist and Speaker “The Shape of Data is a novel perspective and phenomenal achievement in the application of geometry to the field of machine learning. It is expansive in scope and contains loads of concrete examples and coding tips for practical implementations, as well as extremely lucid, concise writing to unpack the concepts. Even as a more veteran data scientist who has been in the industry for years now, having read this book I've come away with a deeper connection to and new understanding of my field." —Kurt Schuepfer, Ph.D., McDonalds Corporation “A great source for the application of topology and geometry in data science. Topology and geometry advance the field of machine learning on unstructured data, and The Shape of Data does a great job introducing new readers to the subject.” —Uchenna “Ike” Chukwu, Senior Quantum Developer "See how data looks not just as lists of numbers but as plots and graphs. The Shape of Data shows the reader how to visualize data sets and discover relations hidden in the numbers and sets. . . . In this age of large data sets and deep learning, data graphics are essential to scientists and engineers—just like this book." —David S. Mazel, Principal/Manager Systems Engineer, Regulus-Group "Everyone who works at the border of geometry and Data Science will find the book and invaluable resource and source of inspiration. It is considerate that the R-codes used in the book have readily accessible python codes. " —Geoffrey Mboya, DPhil (Oxon), Director at Mfano Africa "Comprehensive and exceptionally well written, The Shape of Data: Geometry-Based Machine Learning and Data Analysis in R is impressively 'reader friendly' in organization and presentation, making it an ideal instructional resource for anyone with an interest in topology, computer hacking, or mathematical/statistical computer software." —Midwest Book Review


Best Sellers


Product Details
  • ISBN-13: 9781718503083
  • Publisher: No Starch Press,US
  • Publisher Imprint: No Starch Press,US
  • Height: 234 mm
  • No of Pages: 264
  • Sub Title: Geometry-Based Machine Learning and Data Analysis in R
  • ISBN-10: 1718503083
  • Publisher Date: 12 Sep 2023
  • Binding: Paperback
  • Language: English
  • Returnable: Y
  • Width: 177 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
The Shape of Data: Geometry-Based Machine Learning and Data Analysis in R
No Starch Press,US -
The Shape of Data: Geometry-Based Machine Learning and Data Analysis in R
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

The Shape of Data: Geometry-Based Machine Learning and Data Analysis in R

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!