Buy The Influence of Contact Transparency on the Superconducting Proximity Effect in Thin Semiconducting Films
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Mathematics and Science Textbooks > Physics > Applied physics > Biophysics > The Influence of Contact Transparency on the Superconducting Proximity Effect in Thin Semiconducting Films
The Influence of Contact Transparency on the Superconducting Proximity Effect in Thin Semiconducting Films

The Influence of Contact Transparency on the Superconducting Proximity Effect in Thin Semiconducting Films


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

The superconducting proximity effect allows for the introduction of pair correlations into otherwise normal metals provided that they are coupled through a sufficiently transparent junction. The influence of this proximity effect manifests itself by modifying both the normal layer sheet resistance in the proximity affected region, Rs, and the junction conductance across the N-S boundary, Gc. These two quantities are impossible to measure simultaneously with any single two terminal device even if it is a four point measurement. However, a new three terminal device structure allows us to make two independent four point voltage measurements, which permits the extraction of these two intrinsic aspects of the proximity effect when combined with simple Ohm's law modeling. Devices with completely in-situ junctions between niobium and heavily doped n-GaAs and n-InAs were fabricated via molecular beam epitaxy. In order to reduce the Schottky barrier, a graded and delta-doped InGaAs cap was inserted at the interface. Careful construction of the doping profile in the cap allows for extremely transparent junctions just prior to the onset of superconductivity, the most transparent Nb-GaAs junctions yet reported. The transparency of the junction can be evaluated by calculating the number of available quantum channels between the two different Fermi surfaces and using the Landauer formalism to determine the ideal junction conductance. Comparison to the experimental junction conductance permits the discovery of the fundamental transmission coefficient for transport across the N-S interface. If the semiconducting depth is small enough the presence of correlations in the semiconductor are observed. Samples with deeper depths exhibit no direct evidence of superconductivity inside the semiconductor. Samples consisting of doped InAs were also fabricated and measured. These samples exhibit almost perfect contact between the superconductor and the semiconductor and pair correlations are observed in the semiconductor despite their thickness. These observations confirm that the manifestation of the superconducting proximity effect is due to the competition between the normal and superconducting reservoirs. When the semiconducting layers are thick there exists a region that is unaffected by superconductivity. This region acts as an effective normal reservoir. The weak coupling at the Nb-InGaAs interface limits the strength of pairing in the semiconductor, and if a normal reservoir is present the superconductivity is completely suppressed. This effect is not seen in the more transparent InAs-Nb interfaces. This implies that the InAs is sufficiently transparent that the strong coupling to the superconductor across the N-S interface overcomes the negative effect on pairing due to the normal reservoir and a proximity affected region in the semiconductor near the interface is created. In summary, we are able to tune the strength of the induced pair correlations in the semiconductor by adjusting either the transmission coefficient of the N-S interface and by turning on or off the coupling to a normal reservoir.


Best Sellers


Product Details
  • ISBN-13: 9781243754219
  • Publisher: Proquest, Umi Dissertation Publishing
  • Publisher Imprint: Proquest, Umi Dissertation Publishing
  • Height: 254 mm
  • Weight: 336 gr
  • ISBN-10: 1243754214
  • Publisher Date: 01 Sep 2011
  • Binding: Paperback
  • Spine Width: 11 mm
  • Width: 203 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
The Influence of Contact Transparency on the Superconducting Proximity Effect in Thin Semiconducting Films
Proquest, Umi Dissertation Publishing -
The Influence of Contact Transparency on the Superconducting Proximity Effect in Thin Semiconducting Films
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

The Influence of Contact Transparency on the Superconducting Proximity Effect in Thin Semiconducting Films

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!