Buy Deep Learning by Manel Martinez-Ramon - Bookswagon
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Computing and Information Technology > Computer science > Artificial intelligence > Machine learning > Deep Learning: A Practical Introduction
Deep Learning: A Practical Introduction

Deep Learning: A Practical Introduction


     0     
5
4
3
2
1



Available


X
About the Book

An engaging and accessible introduction to deep learning perfect for students and professionals In Deep Learning: A Practical Introduction, a team of distinguished researchers delivers a book complete with coverage of the theoretical and practical elements of deep learning. The book includes extensive examples, end-of-chapter exercises, homework, exam material, and a GitHub repository containing code and data for all provided examples. Combining contemporary deep learning theory with state-of-the-art tools, the chapters are structured to maximize accessibility for both beginning and intermediate students. The authors have included coverage of TensorFlow, Keras, and Pytorch. Readers will also find: Thorough introductions to deep learning and deep learning tools Comprehensive explorations of convolutional neural networks, including discussions of their elements, operation, training, and architectures Practical discussions of recurrent neural networks and non-supervised approaches to deep learning Fulsome treatments of generative adversarial networks as well as deep Bayesian neural networks Perfect for undergraduate and graduate students studying computer vision, computer science, artificial intelligence, and neural networks, Deep Learning: A Practical Introduction will also benefit practitioners and researchers in the fields of deep learning and machine learning in general.

Table of Contents:
About the Authors xv Foreword xvii Preface xix Acknowledgment xxi About the Companion Website xxiii 1 The Multilayer Perceptron 1 1.1 Introduction 1 1.2 The Concept of Neuron 2 1.3 Structure of a Neural Network 14 1.4 Activations 21 1.5 Training a Multilayer Perceptron 22 1.6 Conclusion 37 2 Training Practicalities 41 2.1 Introduction 41 2.2 Generalization and Overfitting 42 2.3 Regularization Techniques 45 2.4 Normalization Techniques 50 2.5 Optimizers 52 2.6 Conclusion 58 3 Deep Learning Tools 61 3.1 Python: An Overview 61 3.2 NumPy 72 3.3 Matplotlib 83 3.4 Scipy 97 3.5 Scikit-Learn 107 3.6 Pandas 116 3.7 Seaborn 125 3.8 Python Libraries for NLP 131 3.9 TensorFlow 138 3.10 Keras 141 3.11 Pytorch 144 3.12 Conclusion 149 4 Convolutional Neural Networks 153 4.1 Introduction 153 4.2 Elements of a Convolutional Neural Network 153 4.3 Training a CNN 160 4.4 Extensions of the CNN 166 4.5 Conclusion 184 5 Recurrent Neural Networks 187 5.1 Introduction 187 5.2 RNN Architecture 188 5.3 Training an RNN 191 5.4 Long-Term Dependencies: Vanishing and Exploding Gradients 199 5.5 Deep RNN 201 5.6 Bidirectional RNN 203 5.7 Long Short-Term Memory Networks 204 5.8 Gated Recurrent Units 218 5.9 Conclusion 221 6 Attention Networks and Transformers 225 6.1 Introduction 225 6.2 Attention Mechanisms 227 6.3 Transformers 242 6.4 BERT 249 6.5 GPT-2 256 6.6.1 Comparison between ViTs and CNNs 264 6.7 Conclusion 269 7 Deep Unsupervised Learning I 273 7.1 Introduction 273 7.2 Restricted Boltzmann Machines 274 7.3 Deep Belief Networks 278 7.4 Autoencoders 279 7.5 Undercomplete Autoencoder 284 7.6 Sparse Autoencoder 285 7.7 Denoising Autoencoders 287 7.8 Convolutional Autoencoder 288 7.9 Variational Autoencoders 291 7.10 Conclusion 297 8 Deep Unsupervised Learning II 301 8.1 Introduction 301 8.2 Elements of GAN 303 8.3 Training a GAN 305 8.4 Wasserstein GAN 309 8.5 DCGAN 312 8.6 cGAN 316 8.7 CycleGAN 318 8.8 StyleGAN 323 8.9 StackGAN 328 8.10 Diffusion Models 333 8.11 Conclusion 338 9 Deep Bayesian Networks 341 9.1 Introduction 341 9.2 Bayesian Models 342 9.3 Bayesian Inference Methods for Deep Learning 344 9.4 Conclusion 352 Problems 353 List of Acronyms 355 Notation 359 Bibliography 365 Index 387

About the Author :
Manel Martínez-Ramón, PhD, is King Felipe VI Endowed Chair and Professor in the Department of Electrical and Computer Engineering at the University of New Mexico in the United States. He earned his doctorate in Telecommunication Technologies at the Universidad Carlos III de Madrid in 1999. Meenu Ajith, PhD, is a Postdoctoral Research Associate in Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) at Georgia State University, Georgia Institute of Technology, and Emory University. She earned her doctorate degree in Electrical Engineering from the University of New Mexico in 2022. Her research interests include machine learning, computer vision, medical imaging, and image processing. Aswathy Rajendra Kurup, PhD, is a Data Scientist at Intel Corporation. She earned her doctorate degree in Electrical Engineering from the University of Mexico in 2022. Her research interests include image processing, signal processing, deep learning, computer vision, data analysis and data processing.


Best Sellers


Product Details
  • ISBN-13: 9781119861867
  • Publisher: John Wiley & Sons Inc
  • Publisher Imprint: John Wiley & Sons Inc
  • Height: 251 mm
  • No of Pages: 416
  • Returnable: N
  • Sub Title: A Practical Introduction
  • Width: 177 mm
  • ISBN-10: 1119861861
  • Publisher Date: 08 Aug 2024
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Spine Width: 32 mm
  • Weight: 922 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Deep Learning: A Practical Introduction
John Wiley & Sons Inc -
Deep Learning: A Practical Introduction
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Deep Learning: A Practical Introduction

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!