Buy General Theory of Algebraic Equations at Bookstore UAE
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Mathematics and Science Textbooks > Mathematics > Algebra > General Theory of Algebraic Equations
General Theory of Algebraic Equations

General Theory of Algebraic Equations


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

This book provides the first English translation of Bezout's masterpiece, the General Theory of Algebraic Equations. It follows, by almost two hundred years, the English translation of his famous mathematics textbooks. Here, Bezout presents his approach to solving systems of polynomial equations in several variables and in great detail. He introduces the revolutionary notion of the "polynomial multiplier," which greatly simplifies the problem of variable elimination by reducing it to a system of linear equations. The major result presented in this work, now known as "Bezout's theorem," is stated as follows: "The degree of the final equation resulting from an arbitrary number of complete equations containing the same number of unknowns and with arbitrary degrees is equal to the product of the exponents of the degrees of these equations." The book offers large numbers of results and insights about conditions for polynomials to share a common factor, or to share a common root.It also provides a state-of-the-art analysis of the theories of integration and differentiation of functions in the late eighteenth century, as well as one of the first uses of determinants to solve systems of linear equations.Polynomial multiplier methods have become, today, one of the most promising approaches to solving complex systems of polynomial equations or inequalities, and this translation offers a valuable historic perspective on this active research field.

Table of Contents:
Translator's Foreword xi Dedication from the 1779 edition xiii Preface to the 1779 edition xv Introduction: Theory of differences and sums of quantities 1 Definitions and preliminary notions 1 About the way to determine the differences of quantities 3 A general and fundamental remark 7 Reductions that may apply to the general rule to differentiate quantities when several differentiations must be made. 8 Remarks about the differences of decreasing quantities 9 About certain quantities that must be differentiated through a simpler process than that resulting from the general rule 10 About sums of quantities 10 About sums of quantities whose factors grow arithmetically 11 Remarks 11 About sums of rational quantities with no variable divider 12 Book One Section I About complete polynomials and complete equations 15 About the number of terms in complete polynomials 16 Problem I: Compute the value of N(u ... n)T 16 About the number of terms of a complete polynomial that can be divided by certain monomials composed of one or more of the unknowns present in this polynomial 17 Problem II 17 Problem III 19 Remark 20 Initial considerations about computing the degree of the final equation resulting from an arbitrary number of complete equations with the same number of unknowns 21 Determination of the degree of the final equation resulting from an arbitrary number of complete equations containing the same number of unknowns 22 Remarks 24 Section II About incomplete polynomials and first-order incomplete equations 26 About incomplete polynomials and incomplete equations in which each unknown does not exceed a given degree for each unknown. And where the unknowns, combined two-by-two, three-by-three, four-by-four etc., all reach the total dimension of the polynomial or the equation 28 Problem IV 28 Problem V 29 Problem VI 32 Problem VII: We ask for the degree of the final equation resulting from an arbitrary number n of equations of the form (u a ... n)t = 0 in the same number of unknowns 32 Remark 34 About the sum of some quantities necessary to determine the number of terms of various types of incomplete polynomials 35 Problem VIII 35 Problem IX 36 Problem X 36 Problem XI 37 About incomplete polynomials, and incomplete equations, in which two of the unknowns (the same in each polynomial or equation) share the following characteristics: (1) The degree of each of these unknowns does not exceed a given number (different or the same for each unknown); (2) These two unknowns, taken together, do not exceed a given dimension; (3) The other unknowns do not exceed a given degree (different or the same for each), but, when combined groups of two or three among themselves as well as with the first two, they reach all possible dimensions until that of the polynomial or the equation 38 Problem XII 39 Problem XIII 40 Problem XIV 41 Problem XV 42 Problem XVI 42 About incomplete polynomials and equations, in which three of the unknowns satisfy the following characteristics: (1) The degree of each unknown does not exceed a given value, different or the same for each; (2) The combination of two unknowns does not exceed a given dimension, different or the same for each combination of two of these three unknowns; (3) The combination of the three unknowns does not exceed a given dimension. We further assume that the degrees of the n - 3 other unknowns do not exceed given values; we also assume that the combination of two, three, four, etc. of these variables among themselves or with the first three reaches all possible dimensions, up to the dimension of the polynomial 45 Problem XVII 46 Problem XVIII 47 Summary and table of the different values of the number of terms sought in the preceding polynomial and in related quantities 56 Problem XIX 61 Problem XX 62 Problem XXI 63 Problem XXII 63 About the largest number of terms that can be cancelled in a given polynomial by using a given number of equations, without introducing new terms 65 Determination of the symptoms indicating which value of the degree of the final equation must be chosen or rejected, among the different available expressions 69 Expansion of the various values of the degree of the final equation, resulting from the general expression found in (104), and expansion of the set of conditions that justify these values 70 Application of the preceding theory to equations in three unknowns 71 General considerations about the degree of the final equation, when considering the other incomplete equations similar to those considered up until now 85 Problem XXIII 86 General method to determine the degree of the final equation for all cases of equations of the form (u a ... n)t = 0 94 General considerations about the number of terms of other polynomials that are similar to those we have examined 101 Conclusion about first-order incomplete equations 112 Section III About incomplete polynomials and second-, third-, fourth-, etc. order incomplete equations 115 About the number of terms in incomplete polynomials of arbitrary order 118 Problem XXIV 118 About the form of the polynomial multiplier and of the polynomials whose number of terms impact the degree of the final equation resulting from a given number of incomplete equations with arbitrary order 119 Useful notions for the reduction of differentials that enter in the expression of the number of terms of a polynomial with arbitrary order 121 Problem XXV 122 Table of all possible values of the degree of the final equations for all possible cases of incomplete, second-order equations in two unknowns 127 Conclusion about incomplete equations of arbitrary order 134 Book Two In which we give a process for reaching the final equation resulting from an arbitrary number of equations in the same number of unknowns, and in which we present many general properties of algebraic quantities and equations 137 General observations 137 A new elimination method for first-order equations with an arbitrary number of unknowns 138 General rule to compute the values of the unknowns, altogether or separately, in first-order equations, whether these equations are symbolic or numerical 139 A method to find functions of an arbitrary number of unknowns which are identically zero 145 About the form of the polynomial multiplier, or the polynomial multipliers, leading to the final equation 151 About the requirement not to use all coefficients of the polynomial multipliers toward elimination 153 About the number of coefficients in each polynomial multiplier which are useful for the purpose of elimination 155 About the terms that may or must be excluded in each polynomial multiplier 156 About the best use that can be made of the coefficients of the terms that may be cancelled in each polynomial multiplier 158 Other applications of the methods presented in this book for the General Theory of Equations 160 Useful considerations to considerably shorten the computation of the coefficients useful for elimination. 163 Applications of previous considerations to different examples; interpretation and usage of various factors that are encountered in the computation of the coefficients in the final equation 174 General remarks about the symptoms indicating the possibility of lowering the degree of the final equation, and about the way to determine these symptoms 191 About means to considerably reduce the number of coefficients used for elimination. Resulting simplifications in the polynomial multipliers 196 More applications, etc. 205 About the care to be exercised when using simpler polynomial multipliers than their general form (231 and following), when dealing with incomplete equations 209 More applications, etc. 213 About equations where the number of unknowns is lower by one unit than the number of these equations. A fast process to find the final equation resulting from an arbitrary number of equations with the same number of unknowns 221 About polynomial multipliers that are appropriate for elimination using this second method 223 Details of the method 225 First general example 226 Second general example 228 Third general example 234 Fourth general example 237 Observation 241 Considerations about the factor in the final equation obtained by using the second method 251 About the means to recognize which coefficients in the proposed equations can appear in the factor of the apparent final equation 253 Determining the factor of the final equation: How to interpret its meaning 269 About the factor that arises when going from the general final equation to final equations of lower degrees 270 Determination of the factor mentioned above 274 About equations where the number of unknowns is less than the number of equations by two units 276 Form of the simplest polynomial multipliers used to reach the two condition equations resulting from n equations in n - 2 unknowns 278 About a much broader use of the arbitrary coefficients and their usefulness to reach the condition equations with lowest literal dimension 301 About systems of n equations in p unknowns, where p < n 307 When not all proposed equations are necessary to obtain the condition equation with lowest literal dimension 314 About the way to find, given a set of equations, whether some of them necessarily follow from the others 316 About equations that only partially follow from the others 318 Re exions on the successive elimination method 319 About equations whose form is arbitrary, regular or irregular. Determination of the degree of the final equation in all cases 320 Remark 327 Follow-up on the same subject 328 About equations whose number is smaller than the number of unknowns they contain. New observations about the factors of the final equation 333

About the Author :
Etienne Bezout (1730-1783) is credited with the invention of the determinant (named Bezoutian by Sylvester) as well as several key innovations to solve simultaneous polynomial equations in many unknowns. By the time of his death, he was a member of the French Academy of Sciences and the Examiner of the Guards of the Navy and of the Corps of Artillery. Eric Feron Dutton/Ducoffe Professor of Aerospace Engineering at Georgia Institute of Technology, and Visiting Professor of Aerospace Engineering at Massachusetts Institute of Technology, where he is affiliated with the Laboratory for Information and Decision Systems and the Operations Research Center. He is also an Adviser to the French Academy of Technologies. His interests span numerical analysis, optimization, systems analysis, and their applications to aerospace engineering.

Review :
"This is not a book to be taken to the office, but to be left at home, and to be read on weekend, as a romance. We already know the plot, but here we meet all the characters, major and minor."--Cicero Fernandes de Carvalho, Mathematical Reviews "Bezout's classic General Theory of Algebraic Equations is ... an immortal evergreen of astonishing actual relevance... [I]ts first English translation is utmost welcome and appropriate, and a great gain for the international mathematical community, both today and in the future."--Werner Kleinert, Zentralblatt MATH


Best Sellers


Product Details
  • ISBN-13: 9780691114323
  • Publisher: Princeton University Press
  • Publisher Imprint: Princeton University Press
  • Height: 235 mm
  • No of Pages: 368
  • Weight: 698 gr
  • ISBN-10: 0691114323
  • Publisher Date: 02 Apr 2006
  • Binding: Hardback
  • Language: English
  • Returnable: Y
  • Width: 152 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
General Theory of Algebraic Equations
Princeton University Press -
General Theory of Algebraic Equations
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

General Theory of Algebraic Equations

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!